当前位置: > O是直线AB上一点,∠COD是直角,OE平分∠BOC (1)在图1中,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示) (2)将图1中的∠COD按顺时针方向旋转至图2所示的位置①探究∠AO...
题目
O是直线AB上一点,∠COD是直角,OE平分∠BOC

(1)在图1中,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示)
(2)将图1中的∠COD按顺时针方向旋转至图2所示的位置①探究∠AOC与∠DOE的度数关系,写出你得结论,并说明理由
②在∠AOC的内部有一条射线OF,满足2∠AOF+∠BOE=
1
3

提问时间:2021-01-03

答案
(1)
∠DOE=90°-∠COE=90°-
1
2
∠BOC=90°-
1
2
(180°-α)=
1
2
α;
(2)①设∠BOE=x,
∵OE平分∠BOC,
∴∠COE=∠BOE=x,
∴∠AOC=180°-2x,
∵∠DOE=90°-x,
∴∠AOC=2∠DOE;
②∵2∠AOF+∠BOE=
1
3
(∠AOC-∠AOF),
∴6∠AOF+3∠BOE=∠AOC-∠AOF,
∴7∠AOF+3∠BOE=∠AOC,
∵∠AOC=180°-2x,∠BOE=x,∠DOE=90°-x,
∴x=90°-∠DOE,
∴7∠AOF+3(90°-∠DOE)=180°-2(90°-∠DOE)
∴7∠AOF=270°+5∠DOE,
∴5∠DOE-7∠AOF=270°.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.