当前位置: > 如何证明1/3小于sin20°小于7/20...
题目
如何证明1/3小于sin20°小于7/20
非解出sin20°的大小

提问时间:2021-01-03

答案
sin[30°]=1/2,
sin'[x]=cos[x],
sin'[x]在x∈[0,π/2]范围内是减函数,
即曲线在该区间内,斜率虽然为正但是一直减小.
sin[10°]-sin[0°]
>sin[20°]-sin[10°]
>sin[30°]-sin[20°]
所以
sin[20°]-sin[0°]>2(sin[30°]-sin[20°])

(sin[20°]-sin[0°])+(sin[30°]-sin[20°])=sin[30°]-sin[0°]=sin[30°]=1/2,
所以
sin[20°]-sin[0°]>1/2*2/3=1/3.
sin'[x]在x∈[0,π/2]范围内是减函数,x=0斜率为1,大于0是斜率小于1
x的斜率在x∈[0,π/2]范围内恒为1,
sin(0)=0
也就是在x∈[0,π/2]范围内
sin(x)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.