当前位置: > 如何用放缩法证明(1-1/3)(1-1/3^2)(1-1/3^3)…(1-3^n)>1/2?...
题目
如何用放缩法证明(1-1/3)(1-1/3^2)(1-1/3^3)…(1-3^n)>1/2?

提问时间:2021-01-03

答案
(1-1/3)(1-1/3^2)
=1 - 1/3 - (1-1/3) * 1/3^2
>1 - 1/3 - 1 * 1/3^2
=1 - 1/3 - 1/3^2
类似地处理n次,得
(1-1/3)(1-1/3^2)(1-1/3^3)…(1-3^n)
>1 - 1/3 - 1/3^2 - 1/3^3 … - 1/3^n
=2 - ( 1 + 1/3 + 1/3^2 + 1/3^3 … + 1/3^n )
=2 - 1/(1 - 1/3) + 1/3^(n+1)
=2 - 3/2 + 1/3^(n+1)
=1/2 + 1/3^(n+1)
>1/2
十几年书没白读,haha
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.