当前位置: > 在三维向量空间中,起点位于原点,终点位于给定平面上的所有向量是否构成三维向量空间的子空间?...
题目
在三维向量空间中,起点位于原点,终点位于给定平面上的所有向量是否构成三维向量空间的子空间?
请写明原因

提问时间:2021-01-03

答案
该向量的集合可记为{(x,y,z)T|Ax+By+Cz+D=0}
任取A1=(x1,y1,z1)A2=(x2,y2,z2) ,则有Ax1+By1+Cz1+D=0,Ax2+By2+Cz2+D=0
将两个等式相加得A(x1+x2)+B(y1+y2)+C(z1+z2)+2D=0 由此可知,若D不等于0,则A1+A2不满足该集合,即该集合不满足加法的封闭性.若D=0,则满足加法封闭性.在这种情况下证明乘法的封闭性:取任意的实数k,由Ax1+By1+Cz1=0得kAx1+kBy1+kCz1=0,也即Akx1+Bky1+Ckz1=0,所以kx1满足该等式,即该集合满足乘法封闭性.
综上,若D=0,则可构成子空间;若否,则不可.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.