题目
如图,直角梯形ABCD中,AD∥BC,∠A=90°,AB=AD=6,DE⊥DC交AB于E,DF平分∠EDC交BC于F,连接EF.
(1)证明:EF=CF;
(2)当tan∠ADE=
时,求EF的长.
(1)证明:EF=CF;
(2)当tan∠ADE=
1 |
3 |
提问时间:2021-01-02
答案
(1)证明:过D作DG⊥BC于G.
由已知可得四边形ABGD为正方形,
∵DE⊥DC.
∴∠ADE+∠EDG=90°=∠GDC+∠EDG,
∴∠ADE=∠GDC.
又∵∠A=∠DGC且AD=GD,
∴△ADE≌△GDC,
∴DE=DC且AE=GC.
在△EDF和△CDF中
,
∴△EDF≌△CDF,
∴EF=CF;
(2)∵tan∠ADE=
=
,
∴AE=GC=2.
∴BC=8,
BE=4,设CF=x,则BF=8-CF=8-x,
在Rt△BEF中,由勾股定理得:x2=(8-x)2+42,
解得x=5,
即EF=5.
由已知可得四边形ABGD为正方形,
∵DE⊥DC.
∴∠ADE+∠EDG=90°=∠GDC+∠EDG,
∴∠ADE=∠GDC.
又∵∠A=∠DGC且AD=GD,
∴△ADE≌△GDC,
∴DE=DC且AE=GC.
在△EDF和△CDF中
|
∴△EDF≌△CDF,
∴EF=CF;
(2)∵tan∠ADE=
AE |
AD |
1 |
3 |
∴AE=GC=2.
∴BC=8,
BE=4,设CF=x,则BF=8-CF=8-x,
在Rt△BEF中,由勾股定理得:x2=(8-x)2+42,
解得x=5,
即EF=5.
(1)过D作DG⊥BC于G,由已知可得四边形ABGD为正方形,然后利用正方形的性质和已知条件证明△ADE≌△GDC,接着利用全等三角形的性质证明△EDF≌△CDF,
(2)由tan∠ADE=
根据已知条件可以求出AE=GC=2.设EF=x,则BF=8-CF=8-x,BE=4.在Rt△BEF中根据勾股定理即可求出x,也就求出了EF.
(2)由tan∠ADE=
1 |
3 |
解直角三角形;全等三角形的判定;勾股定理;直角梯形.
本题考查梯形、正方形、直角三角形的相关知识.解决此类题要懂得用梯形的常用辅助线,把梯形分割为矩形和直角三角形,从而由矩形和直角三角形的性质来求解.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1第一题
- 2一项工作,甲单独做要15天完成,甲乙一起做要9天完成,乙单独做要几天完成?
- 3When well Beijing held the Olympic Games?
- 4有两根同样长的绳子第一根截去12米第二根接上14米这时第二根是第一根的3倍问两根绳子原来有多长?算式解
- 5联合关系复句和偏正关系复句的区是什么
- 6高中概率 有正方体上任意选择两条棱,则这两条冷相互平行的概率是?
- 7散文诗两首 荷叶·母亲 的内容
- 8直线y=x+2与x轴交于点A,直线y=kx+b与x轴交于点B,如果两直线没有交点,且AB=2,求直线y=kx+b的解析式
- 9You want something done right,you have to do it yourself.谁知道翻译过来是什么意思
- 10如图所示,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长.