当前位置: > 已知0≤x≤1,f(x)=x2−ax+a/2(a>0),f(x)的最小值为m. (1)用a表示m; (2)求m的最大值及此时a的值....
题目
已知0≤x≤1,f(x)=x2−ax+
a
2
(a>0)
,f(x)的最小值为m.
(1)用a表示m;
(2)求m的最大值及此时a的值.

提问时间:2021-01-02

答案
(1)∵f(x)=2x−a=2(x−
a
2
)

①当a>2时,
a
2
>1
,f(x)<0,∴f(x)在[0,1]上单调递减,在x=1处取得最小值f(1)=1-a+
a
2
=1−
a
2

②当0<a<2时,0<
a
2
<1
,令f(x)=0,解得x=
a
2
,列表如下:
由表格可知:f(x)在x=
a
2
处取得极小值f(
a
2
)=−
a2
4
+
a
2
,也是最小值.
③当a=2时,在x∈[0,1]上,f(x)=2(x-1)≤0,∴函数f(x)单调递减,在x=1处取得最小值0.
综上可知:m=
a2
4
+
a
2
,当0<a≤2时
1−
a
2
,当a>2时

(2)①当0<a≤2时,m(a)=
1
2
a+
1
2
=
1−a
2
,当0<a<1时,m(a)>0,函数m(a)单调递增;当1<a≤2时,m(a)<0,函数m(a)单调递减.
可知当a=1时,m(a)取得极大值
1
4
,也是最大值;
②当a>2时,m(a)=1−
a
2
在(2,+∞)上单调递减,m(a)<m(2)=0.
综上可知:只有当a=1时,m(a)取得最大值
1
4
(1)通过对a分类讨论,利用导数即可求出;
(2)由表达式利用导数即可求出其最大值.

二次函数的性质.

熟练掌握利用导数研究函数的单调性是解题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.