当前位置: > 求极限:lim{[x^(1/3)-a^(1/3)]/(x-a)^(1/3)}, x趋近于a...
题目
求极限:lim{[x^(1/3)-a^(1/3)]/(x-a)^(1/3)}, x趋近于a

提问时间:2021-01-01

答案
原式=lim(x→a)⁡[x^(1/3) -a^(1/3)]/(x-a)^1/3=lim(x-a)/{[x^2/3+(ax)^1/3+a^2/3)](x-a)^1/3}=lim(x-a)^2/3/[x^2/3+(ax)^1/3+a^2/3] (x→a).所以原式=0.
令由于分子分母在x趋近于a时都趋于0,是0/0未定型,用洛比达法则对分子分母分别求导然后易得原式等于0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.