当前位置: > 试说明两个连续正偶数的平方差一定能被4整除,但不能被6整除...
题目
试说明两个连续正偶数的平方差一定能被4整除,但不能被6整除

提问时间:2021-01-01

答案
连续两个正偶数可以表示为X 和X+2
两数的平方差可以表示为:(X+2)^2-X^2 =X^2+4X+4-X^2= 4X+4= 4(X+1)
所以一定可以被4整除.
此外,题目后面一半有错误,这个平方差有可能被6整除.
例如,当X=2时,2^2=4 4^2=16 16-4=12 12可以被6整除.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.