题目
已知正方体ABCD-A1B1C1D1中,E、F分别为C1D1,B1C1的中点,AC∩BD=P,A1C1∩EF=Q,求证:(1)D、B、F、E
已知正方体ABCD-A1B1C1D1中,E、F分别为C1D1,B1C1的中点,AC∩BD=P,A1C1∩EF=Q,求证:
(1)D、B、F、E 四点共面;
(2)若A1C交平面DBFE于R点.则P、Q、R三点共线
已知正方体ABCD-A1B1C1D1中,E、F分别为C1D1,B1C1的中点,AC∩BD=P,A1C1∩EF=Q,求证:
(1)D、B、F、E 四点共面;
(2)若A1C交平面DBFE于R点.则P、Q、R三点共线
提问时间:2020-12-30
答案
第一个问题:
∵E、F分别是C1D1、B1C1的中点,∴EF是△B1C1D1的中位线,∴EF∥D1B1.
∵ABCD-A1B1C1D1是立方体,∴BB1∥DD1、BB1=DD1,∴BB1D1D是平行四边形,
∴DB∥DB1,结合证得的EF∥D1B1,得:EF∥DB,∴D、B、F、E共面.
第二个问题:
∵AC∩BD=P、A1C1∩EF=Q,∴EF是平面AA1C1C和平面DBFE的交线.
∵A1C交平面DBFE于R点,∴R是EF是平面AA1C1C和平面DBFE的一个公共点.
∵两相交平面的所有公共点都在这两平面的交线上,∴P、Q、R三点共线.
∵E、F分别是C1D1、B1C1的中点,∴EF是△B1C1D1的中位线,∴EF∥D1B1.
∵ABCD-A1B1C1D1是立方体,∴BB1∥DD1、BB1=DD1,∴BB1D1D是平行四边形,
∴DB∥DB1,结合证得的EF∥D1B1,得:EF∥DB,∴D、B、F、E共面.
第二个问题:
∵AC∩BD=P、A1C1∩EF=Q,∴EF是平面AA1C1C和平面DBFE的交线.
∵A1C交平面DBFE于R点,∴R是EF是平面AA1C1C和平面DBFE的一个公共点.
∵两相交平面的所有公共点都在这两平面的交线上,∴P、Q、R三点共线.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1|x-2010|+|2011-x|=2012 怎么解
- 210X+5=11x-5+2x等于多少
- 3六年级一班20名男生和30名女生共植树120可.已知2个男生值的棵树与3个女生值的一样多.这个班男.女 生各植
- 4一平面镜与水平桌面成45°角固定在水平桌面如图所示,一小球以1m/s的速度沿桌面向平面镜匀速滚去,则小球在平面镜里的像( ) A.以1m/s的速度,做竖直向上的运动 B.以1m/s的速度,做竖
- 5描写春景的词语和诗句
- 6关于统计的问题,在正态分布的population下,sample distribution是xbar~N(u. 方差除以n)
- 7君子敬而无失,与人恭而有礼.四海之内皆兄弟也.君子何患乎无兄弟 怎么译?
- 8为什么HF分子之间只能形成一个氢键,而水分子之间可以形成两个?
- 9He__a sports shop.Ago to .B.go.C.goes.D.goes to
- 10补全下列单词并写出中文意思.
热门考点