题目
数学证明题:等差数列依次每k项的和Sk,S2k-Sk,S3k-S2k,……,仍成等差数列,其公差为原公差的k^2倍.
本人智商拙计,
本人智商拙计,
提问时间:2020-12-27
答案
证明:
利用等差数列的定义即可
设等差数列{an}的公差为d
则 Sk,S2k-Sk,S3k-S2k,……,的通项是bn= a(nk-k+1)+a(nk-k+2)+.+a(nk)
∴ b(n+1)= a(nk+1)+a(nk+2)+.+a(nk+k)
∴ b(n+1)-b(n)
=[a(nk+1)+a(nk+2)+.+a(nk+k)]-[ a(nk-k+1)+a(nk-k+2)+.+a(nk)]
=[a(nk+1)-a(nk-k+1)]+[a(nk+2)-a(nk-k+2)]+.+[a(nk+k)-a(nk)]
= kd + kd +.+ kd
共有k个
=k²d(是一个常数)
∴ :等差数列依次每k项的和Sk,S2k-Sk,S3k-S2k,……,仍成等差数列,其公差为原公差的k^2倍.
利用等差数列的定义即可
设等差数列{an}的公差为d
则 Sk,S2k-Sk,S3k-S2k,……,的通项是bn= a(nk-k+1)+a(nk-k+2)+.+a(nk)
∴ b(n+1)= a(nk+1)+a(nk+2)+.+a(nk+k)
∴ b(n+1)-b(n)
=[a(nk+1)+a(nk+2)+.+a(nk+k)]-[ a(nk-k+1)+a(nk-k+2)+.+a(nk)]
=[a(nk+1)-a(nk-k+1)]+[a(nk+2)-a(nk-k+2)]+.+[a(nk+k)-a(nk)]
= kd + kd +.+ kd
共有k个
=k²d(是一个常数)
∴ :等差数列依次每k项的和Sk,S2k-Sk,S3k-S2k,……,仍成等差数列,其公差为原公差的k^2倍.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点