当前位置: > 求证:m^4+4n^4一定可以表示为k个正整数的平方和(k≥3,m,n∈正整数)...
题目
求证:m^4+4n^4一定可以表示为k个正整数的平方和(k≥3,m,n∈正整数)
求证:m^4+4n^4一定可以表示为k个正整数的平方和(k≥3,m、n∈正整数)

提问时间:2020-12-26

答案
一、当m=n时,
  m^4+4n^4=5m^4=(m^2)^2+(m^2)^2+(m^2)^2+(m^2)^2+(m^2)^2.
  此时,命题显然成立.
二、当m、n不等时,
  m^4+4n^4
  =m^4+4(mn)^2+4n^4-4(mn)^2
  =(m^2+2n^2)^2-4(mn)^2
  =[(m^2+2n^2)+2mn][(m^2+2n^2-2mn]
  =[(m^2+2mn+n^2)+n^2][(m^2-2mn+n^2)+n^2]
  =[(m+n)^2+n^2][(m-n)^2+n^2]
  =[(m+n)(m-n)]^2+[(m+n)n]^2+[(m-n)n]^2+(n^2)^2.
  此时,命题也显然成立.
于是,问题得证.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.