当前位置: > 从等腰RT△ABC的斜边BC上的一点P,作PD⊥AB于D,PE⊥AC于E,连CD交PE于点M,连BE交PD于点N.求证:PM=PN....
题目
从等腰RT△ABC的斜边BC上的一点P,作PD⊥AB于D,PE⊥AC于E,连CD交PE于点M,连BE交PD于点N.求证:PM=PN.

提问时间:2020-12-25

答案
∵AB⊥AC
PE⊥AC,PD⊥AB,
∴PE‖AB,PD‖AC,
在△CBD中,
OM/BD=CM/CD,
同理,在△CAD中,
CM/CD=CE/CA,
则,PM/BD=CE/CA,
PM/CE=BD/CA.(更比),
AB=AC,
PM/CE=BD/AB,
又PD‖AC,
BD/AB=BP/BC,
PM/CE=BP/BC,
在△BEC中,NP/CE=BP/BC,
∴PM/CE=NP/CE,
∴PM=PN,证毕.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.