当前位置: > 求lim((e^x+e^2x+e^3x……e^nx)/n)^(1/x),n为给定的自然数,lim下面的约束条件为x~0...
题目
求lim((e^x+e^2x+e^3x……e^nx)/n)^(1/x),n为给定的自然数,lim下面的约束条件为x~0

提问时间:2020-12-23

答案
用等价无穷小ln(1+x)=x和洛必达法则即可,
它的极限为e ^ (n+1)/2
原式=exp{lim{1/x*ln[1+(e^x+e^2x+...+e^nx-n)/n]}}
x->0
=exp[lim(e^x+e^2x+...+e^nx-n)/nx] -----0/0型
x->0
=exp[lim(e^x+2e^2x+...+ne^nx)/n]
x->0
=exp(n+1/2) ----x->0时e^x=1
即它的极限为e ^ [(n+1)/2]
这个是1991年的数学三的考研原题吧.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.