当前位置: > (1-ax^2)^1/4-1和x*Sinx是等价无穷小,求a...
题目
(1-ax^2)^1/4-1和x*Sinx是等价无穷小,求a

提问时间:2020-12-22

答案
用罗必塔法则,对分子分母分别求导,然后趋于0 ,求 a ,使得比为1.
(1-ax^2)^1/4-1 求导得:(1/4) (1-ax^2)^(-3/4) (-2a)x
x --> 0 时,化为 -1/2 a x
x*Sinx 求导得:sinx + xcosx
x --> 0 时,化为 sinx + x --> 2x (因为 x 和 sinx 是等价无穷小)
所以,a = -4 时,(1-ax^2)^1/4-1和x*Sinx是等价无穷小.
比值的极限是 1 .
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.