当前位置: > 已知等差数列{an}满足a2=-7,a6+a8=6,求数列{ an/2^n-1 }的前n项和?...
题目
已知等差数列{an}满足a2=-7,a6+a8=6,求数列{ an/2^n-1 }的前n项和?

提问时间:2020-12-21

答案
已知等差数列{an}满足a2=-7,a6+a8=6,有
a2+4d+a2+6d=2a2+10d=6
得d=[6-2*(-7)]/10=2
得an=a2+(n-2)d=-7+2(n-2)=2n-11
an/2^( n-1)=(2n-11)/2^( n-1)=n/2^(n-2)-11/2^( n-1)
Sn=1/(1/2)+2/1+3/2+...+n/2^(n-2)
2Sn=2/(1/2)+3/1+...+n/2^(n-3)
得Sn=1/(1/2)+1/1+...+1/2^(n-3)-n/2^(n-2)=4-1/2^(n-3)-n/2^(n-2)
数列{an/2n-1}的前n项和
=4-1/2^(n-3)-n/2^(n-2)-11[2-1/2^(n-2)]
=-18-1/2^(n-3)-n/2^(n-2)+11/2^(n-2)
=-18+/2^(n-2)-n/2^(n-2)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.