当前位置: > 请问如何证明lim(n→∞)[n/(n2+n)+n/(n2+2n)+…+n/(n2+nn)]=1,...
题目
请问如何证明lim(n→∞)[n/(n2+n)+n/(n2+2n)+…+n/(n2+nn)]=1,
以及请问如何证明lim(n→∞)[1/√(n2+1)+1/√(n2+2)…+1/√(n2+n)]=1
利用夹逼准则

提问时间:2020-12-19

答案
Limit[1/√(n^2 + 1) + 1/√(n^2 + 2) + … + 1/√(n^2 + n),n→∞]≥ Limit[1/√(n^2 + n) + 1/√(n^2 + n) + … + 1/√(n^2 + n),n→∞]≥ Limit[n/√(n^2 + n),n→∞]≥ Limit[1/√(1 + 1/n),n→∞] ≥ 1;Limit[1...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.