当前位置: > 设X1、X2是方程X^2-Xsin(π/5)+cos(4π/5)=0的两根,求arctanx1+arctanx2的值 设arctanx1=a,arctanx2=b...
题目
设X1、X2是方程X^2-Xsin(π/5)+cos(4π/5)=0的两根,求arctanx1+arctanx2的值 设arctanx1=a,arctanx2=b
设X1、X2是方程X^2-Xsin(π/5)+cos(4π/5)=0的两根,求arctanx1+arctanx2的值
设arctanx1=a,arctanx2=b,则tana=x1,tanb=x2
又因为x1+x2=sin(π/5),x1*x2=cos(4π/5)
所以tan(a+b)=(tana+tanb)/(1-tanatanb)=(x1+x2)/(1-x1x2)=sin(π/5)/[1-cos(4π/5)]=tan(π/10)
又因为x1+x2=sin(π/5)>0,x1*x2=cos(4π/5)0,x1*x2=cos(4π/5)

提问时间:2020-12-19

答案
因为反正切函数的值域:arctanx属于(-π/2,π/2)
若X>0,则arctanx属于(0,π/2)
若X
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.