题目
已知双曲线x^2/a^2-y^/b^2=1(b>a>0),O为坐标原点离心率e=2,点M(根号5,根号3)在双曲线上,1,求双
已知双曲线x^2/a^2-y^/b^2=1(b>a>0),O为坐标原点离心率e=2,点M(根号5,根号3)在双曲线上,
1,求双曲线的方程
2,若直线L与双曲线交与P,Q两点,且OP向量乘OQ向量=0,求|OP|^2+|OQ|^2的最小值 设直线pq的方程是y=kx+m,点p的坐标是(x1,y1),点q的坐标是(x2,y2)将pq直线方程代入双曲线方程得到:(3-k^2)x^2-2kmx-m^2-12=0(※)由向量op点乘向量oq=0得到:x1x2+y1y2=0,即(1+k^2)x1x2+KM(X1+X2)+m^2=o所以[(1+k^2)m^2+12/k^2-3]-km[2km/k^2-3]+m^2=0,化简得:m^2=6k^2+6所以向量pq的模的平方=(1+k^2)[(x1+x2)^2-4x1x2]=24+[384k^2/(k^2-3)^2]≥24.问:最后一步的24+[384k^2/(k^2-3)^2]怎么来的,我化简不出来.
当k=0时,上式去等号,且方程(※)有解,又因为直线pq垂直x轴时,所以op模的平方+oq模的平方的最小值是24,为什么因为直线pq垂直x轴时,所以op模的平方+oq模的平方的最小值是24,怎么会是垂直x轴最小?
已知双曲线x^2/a^2-y^/b^2=1(b>a>0),O为坐标原点离心率e=2,点M(根号5,根号3)在双曲线上,
1,求双曲线的方程
2,若直线L与双曲线交与P,Q两点,且OP向量乘OQ向量=0,求|OP|^2+|OQ|^2的最小值 设直线pq的方程是y=kx+m,点p的坐标是(x1,y1),点q的坐标是(x2,y2)将pq直线方程代入双曲线方程得到:(3-k^2)x^2-2kmx-m^2-12=0(※)由向量op点乘向量oq=0得到:x1x2+y1y2=0,即(1+k^2)x1x2+KM(X1+X2)+m^2=o所以[(1+k^2)m^2+12/k^2-3]-km[2km/k^2-3]+m^2=0,化简得:m^2=6k^2+6所以向量pq的模的平方=(1+k^2)[(x1+x2)^2-4x1x2]=24+[384k^2/(k^2-3)^2]≥24.问:最后一步的24+[384k^2/(k^2-3)^2]怎么来的,我化简不出来.
当k=0时,上式去等号,且方程(※)有解,又因为直线pq垂直x轴时,所以op模的平方+oq模的平方的最小值是24,为什么因为直线pq垂直x轴时,所以op模的平方+oq模的平方的最小值是24,怎么会是垂直x轴最小?
提问时间:2020-12-15
答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点