当前位置: > 不等式证明题...
题目
不等式证明题
设f(x)在区间[0,1]上二阶可微,且f'(0)=f'(1)=0 证明存在c属于(0,1)满足f''(c)>=4|f(1)-f(0)|

提问时间:2020-12-14

答案
白羊座星光 ,
这个题我做了起码有四五遍了,是道比较精典的微分中值证明题了.其关键是将函数在x=0,x=1处用麦克劳林展式展开.算了,我写一遍吧.
当X E(0,1)时,f(x)=f(0)+f'(0)x+f''(a)x^2 a E(0,x)
f(x)=f(1)+f'(1)(1-x)+f''(b)x^2 b E(x,1),
两式相减得,0=f(0)-f(1)+[f''(a)-f''(b)]x^2.移项并加绝对值为 |(1)-f(0)|=|f''(a)-f''(b)|x^2.因为二阶可微,故在二阶上也是连续的,通过介值定理能找到.f''(c)=1/2(f"(a)+f''(b)),然后你用一次绝对值不等式就可以了.注意X^2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.