当前位置: > 求∫arctan(1+√x)d(x)...
题目
求∫arctan(1+√x)d(x)

提问时间:2021-01-09

答案
令1+√x=t,
则x=(t-1)²,
所以
∫ arctan(1+√x)dx
=∫ arctant d[(t-1)²] 使用分部积分法
=(t-1)² *arctant - ∫ (t-1)² d(arctant)
=(t-1)² *arctant - ∫ (t-1)²/(1+t²) dt
=(t-1)² *arctant - ∫ (t²-2t+1)/(1+t²) dt
=(t-1)² *arctant - ∫ 1- 2t/(1+t²) dt
=(t-1)² *arctant - t +ln|1+t²| +C 代入x=(t-1)²
=x *arctan(1+√x) - (1+√x) + ln|x+2√x+2| +C ,C为常数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.