当前位置: > 抽象代数:证明:设群中元素a的阶无限,则 = s=+-t...
题目
抽象代数:证明:设群中元素a的阶无限,则 = s=+-t
证:”==>” 若=,则存在整数m,n,使得a^s=(a^t)^m=a^(tm) a^t=(a^s)^n=a^(sn),从而由|a|=∞可知,s=tm,t=sn,故s=snm,nm=1,解得s=+-t.
我不懂“若=,则存在整数m,n,使得a^s=(a^t)^m=a^(tm)”

提问时间:2020-12-14

答案
这个符号就是表示由b生成的循环群,里面任何一个元素都可表示成b的某个整数幂.现在=表示这两个群相等.说明了a^s∈即存在一个整数m使得a^s=(a^t)^m=a^(tm)另一个同理.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.