当前位置: > 高中数学证明(用上二次展开式、放缩法)...
题目
高中数学证明(用上二次展开式、放缩法)
证明:2

提问时间:2020-12-13

答案
将(1+1/n)^n用二项式定理展开,其中的前两项为1+n*(1/n)=2,故(1+1/n)^n>2(当n>2的时候) 另一方面,考虑展开式中的第(k+1)项,为Cnk(1/n)^k=n(n-1)...(n-k+1)/(k!n^k)=(1-1/n)(1-2/n)...(1-(k-1)/n)/k!≤1/k!...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.