当前位置: > 求函数y=(x-1)e^arctanx 的单调区间及极值...
题目
求函数y=(x-1)e^arctanx 的单调区间及极值

提问时间:2020-12-12

答案
y'=e^arctanx+(x-1)e^(arctanx)/(1+x^2)=e^arctanx((x^2+x)/(x^2+1)),定义域是R
e^arctanx>0,(x^2+1)>0,所以y'=0,即:x^2+x,解得:x=0或-1
当-10
所以函数的单调增区间是:(-inf,-1]∪[0,inf);单调减区间是:[-1,0]
在x=-1的左侧临域内f'(x)>0,在x=-1的右侧临域内f'(x)0
所以函数在x=0处取得极小值:-e^arctan(0)=-e^(0)=-1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.