当前位置: > 高中导数计算...
题目
高中导数计算
函数f(x)=e^x/(x-a) (其中a<0),若存在x∈(a,0],使得f(x)≤1/2,求a的取值范围
(1)求f(x)定义域和单调区间

提问时间:2020-12-12

答案
其实很简单.
e^x/(x-a) ≤1/2
因为x-a>0所以直接移过去得到
e^x ≤(x-a)/2
把不等号两边看做两个函数,在同一坐标系中易得两个都是单调增函数对于e^x来说x∈(a,0]时他的最大值是1.
接下去是关键了,因为题目只要求“存在”,所以只要使(x-a)/2有一个值能大于等于e^x就行了.所以就把(x-a)/2的最大值带入即x=0时即可.因为如果连他的最大值都没法比e^x大那就是“不存在”了.
所以当x=0时得
1≤-a/2
得a≤-2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.