题目
在三角形的边OA,OB上分别有一点P,Q,已知OP:PA=1:2,OQ:QB=3:2连接AQ,BP,设它们交于R,若OA=a,OB=b
(1)用向量a和向量b表示向量OR.
(2)过R作RH⊥AB,垂足为H,若|a|=1,|b|=2,向量a与向量b的夹角θ∈[π/3,2π/3]求|BH|/|BA|的取值范围.
(1)用向量a和向量b表示向量OR.
(2)过R作RH⊥AB,垂足为H,若|a|=1,|b|=2,向量a与向量b的夹角θ∈[π/3,2π/3]求|BH|/|BA|的取值范围.
提问时间:2020-12-10
答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点