当前位置: > 过点p(-2,4)且以两圆x^2+y^2-6x=0和x^2+Y^2=4的公共弦为一条弦的圆的方程是?...
题目
过点p(-2,4)且以两圆x^2+y^2-6x=0和x^2+Y^2=4的公共弦为一条弦的圆的方程是?

提问时间:2020-12-08

答案
设过交点圆的方程:X^2+Y^2-6X+k*(X^2+Y^2-4)=0 代入P(-2,4)点坐标得:(-2)^2+4^2-6*(-2)+k*((-2)^2+4^2)-4)=0 解得:k=-2 所以方程为:X^2+Y^2-6X-2*(X^2+Y^2-4)=0 化简得:X^2+Y^2+6X-8=0 或:(X+3)^2+Y^2=17 有错请补...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.