当前位置: > 可以使m^2+m+7(其中m为整数)表示成完全平方数,求这些数的积...
题目
可以使m^2+m+7(其中m为整数)表示成完全平方数,求这些数的积

提问时间:2020-12-02

答案
设m^2+m+7=k^2
所以m^2+m+1/4+27/4=k^2
所以(m+1/2)^2+27/4=k^2
所以(m+1/2)^2-k^2=-27/4
所以(m+1/2+k)(m+1/2-k)=-27/4
所以[(2m+2k+1)/2][(2m-2k+1)/2]=-27/4
所以(2m+2k+1)(2m-2k+1)/4=-27/4
所以(2m+2n+1)(2m-2k+1)=-27
因为k>0(因为k^2为完全平方数)
所以① 2m+2k+1=27 2m-2k+1=-1 得:m=6,k=7
②2m+2k+1=9 2m-2k+1=-3 得:m=1,k=3
③2m+2k+1=3 2m-2k+1=-9 得: m=-2,k=3
④2m+2k+1=1 2m-2k+1=-27 得:m=-7,k=7
所以所有m 的积为6*1*-2*-7=84
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.