题目
如图,已知直线Y=-1/2X与抛物线Y=-1/4X2+6交于点A、B两点1、求A、B坐标2、求AB垂直平分线的解析式
P在AB上方的抛物线上移动、动点P与AB构成无数的三角形这些三角形中是否存在面积最大的一个三角形如果存在求出最大面积
P在AB上方的抛物线上移动、动点P与AB构成无数的三角形这些三角形中是否存在面积最大的一个三角形如果存在求出最大面积
提问时间:2020-12-01
答案
1、y=(-1/2)x……(1)
y=(-1/4)x²+6……(2)
将(1)代入(2)中得:
(-1/2)x=(-1/4)x²+6
整理:x²-2x-6=0
x=6或-4 y=-3或2
所以A(6,-3)、B(-4,2)
2、AB的中点((6-4)/2,(-3-2)/2)即(1,-5/2)
AB垂直平分线的斜率k=2
所以解析式设y=kx+b,将中点代入:-5/2=2+b b=-9/2
所以AB垂直平分线的解析式:y=2x-(9/2)
3、AB=√[(6+4)²+(-3-2)²]=√125=5√5
设P(a,(-1/4)a²+6),则P到直线y=(-1/2)x,即x+2y=0 的距离
PD=|a+2×[(-1/4)a²+6]|/√(1+2²)
= |a-(1/2)a²+12|/√5
所以S△ABP=AB×PD÷2
=5√5×[ |a-(1/2)a²+12|/√5]÷2
=5/2×[ |a-(1/2)a²+12|]
讨论:1)a-(1/2)a²+12>0
得S△ABP=5/2×[ a-(1/2)a²+12]
=-5/4(a²-2a-24)
=-5/4(a-1)²+125/4
当a-1=0时即P(1,23/4)在AB的上方,△ABP 面积最大=125/4
2)1)a-(1/2)a²+12<0时,P点在AB下方,不做讨论.
所以P点在AB上方△ABP 面积最大=125/4.
y=(-1/4)x²+6……(2)
将(1)代入(2)中得:
(-1/2)x=(-1/4)x²+6
整理:x²-2x-6=0
x=6或-4 y=-3或2
所以A(6,-3)、B(-4,2)
2、AB的中点((6-4)/2,(-3-2)/2)即(1,-5/2)
AB垂直平分线的斜率k=2
所以解析式设y=kx+b,将中点代入:-5/2=2+b b=-9/2
所以AB垂直平分线的解析式:y=2x-(9/2)
3、AB=√[(6+4)²+(-3-2)²]=√125=5√5
设P(a,(-1/4)a²+6),则P到直线y=(-1/2)x,即x+2y=0 的距离
PD=|a+2×[(-1/4)a²+6]|/√(1+2²)
= |a-(1/2)a²+12|/√5
所以S△ABP=AB×PD÷2
=5√5×[ |a-(1/2)a²+12|/√5]÷2
=5/2×[ |a-(1/2)a²+12|]
讨论:1)a-(1/2)a²+12>0
得S△ABP=5/2×[ a-(1/2)a²+12]
=-5/4(a²-2a-24)
=-5/4(a-1)²+125/4
当a-1=0时即P(1,23/4)在AB的上方,△ABP 面积最大=125/4
2)1)a-(1/2)a²+12<0时,P点在AB下方,不做讨论.
所以P点在AB上方△ABP 面积最大=125/4.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1a-25b根据左边的式子一本书当a=238 b=7天还剩下几页?怎样列方程?
- 2从中美关系的发展过程可以看出当今世界呈现出怎样的发展趋势
- 32010高考英语江苏卷D阅读翻译
- 4比20吨多1/4是(
- 5德意志帝国还加强了普鲁士王国的( )特色,( )在帝国中占据了重要地位
- 6如图是一种测量小汽车油箱内油量装置的原理图.压力传感器R的电阻会随所受压力大小发生变化,油量表(由电流表改装而成)指针能指示出油箱里的油的多少.已知:压力传感器R的电阻与所受压力的关系如下表所示.
- 7英语翻译
- 8工作8年,脑子秀住了,
- 9关于人间真情的小故事50字以内
- 10点Q在曲线x^2+y^2=1上运动,点Q关于点A(1,-1)的对称点为P,求P的轨迹方程
热门考点