当前位置: > 方程组x^2+√(2y)=a^2+2a+2 和√(2y)=4x的实数解的个数...
题目
方程组x^2+√(2y)=a^2+2a+2 和√(2y)=4x的实数解的个数

提问时间:2020-12-01

答案
由2)知√(2y)=4x>=0,即x,y都为非负数.
将2)式代入1)式得:
x^2+4x=a^2+2a+2
(x+2)^2=(a+1)^2+5
因x>=0,开平方得:x+2=√[(a+1)^2+5]
故x=√[(a+1)^2+5]-2>=√5-2>0
故y=(4x)^2/2=8x^2
因此原方程只有一组实数解.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.