当前位置: > 欧几里得用反证法证明素数的个数是无限的...
题目
欧几里得用反证法证明素数的个数是无限的

提问时间:2020-11-30

答案
假设所有的素数依次是2,3,5...P
令M=2*3*5*...*P+1
因为2,3,5...P不能整除M,则M要么是素数或者有比P更大的素数能整除M,2种情况下都说明有新的更大的素数,与假设矛盾,所有素数无限.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.