当前位置: > 证明:r维向量组的每个向量添上n-r个分量,成为n维向量组,若r维向量组线性无关,则n维向量组也线性...
题目
证明:r维向量组的每个向量添上n-r个分量,成为n维向量组,若r维向量组线性无关,则n维向量组也线性
无关

提问时间:2020-11-30

答案
知识点:向量组a1,...,as 线性无关的充要条件是齐次线性方程组(a1,...,as)x=0 只有零解.
设r维向量组a1,...,as线性无关
则齐次线性方程组(a1,...,as)x=0只有零解
设a1,...,as添加分量后为b1,...,bs
则 齐次线性方程组 (b1,...,bs)x=0 也只有零解
--添加分量是增加了方程的个数,即增加了未知量的约束条件
--原方程组只有零解,现方程组的解只会减少,但再少它也有个零解
所以b1,...,bs线性无关.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.