当前位置: > 分析函数y=xe ˆ-x的单调性、凹凸性、 极值、拐点及渐近线(关键是拐点和渐近线不怎么会额)...
题目
分析函数y=xe ˆ-x的单调性、凹凸性、 极值、拐点及渐近线(关键是拐点和渐近线不怎么会额)

提问时间:2020-11-29

答案
y'=e^(-x)-xe^(-x)=e^(-x)(1-x)=0,得:极值点x=1
y"=-e^(-x)-e^(-x)+xe^(-x)=e^(-x)(x-2),得:拐点x=2
x0; x-->-∞时,y-->0; 因此y=0为其渐近线.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.