当前位置: > 已知f(x)=ax2+bx+c,若f(0)=0,且f(x+1)=f(x)+x+1,试求f(x)的表达式....
题目
已知f(x)=ax2+bx+c,若f(0)=0,且f(x+1)=f(x)+x+1,试求f(x)的表达式.

提问时间:2020-11-29

答案
∵f(x)=ax2+bx+c(a≠0),f(0)=0,
∴c=0.
又f(x+1)=f(x)+x+1,
∴a(x+1)2+b(x+1)+c=ax2+bx+c+x+1
即2ax+a+b=x+1,
2a=1
a+b=1

解得
a=
1
2
b=
1
2

∴f(x)=
1
2
x2+
1
2
x.
由f(0)=0,可得c=0,由f(x+1)=f(x)+x+1建立方程组可解a,b的值,进而求出f(x)的表达式.

二次函数的性质.

本题为二次函数的解析式的求解,再根据函数的解析式求其单调区间,属基础题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.