当前位置: > 正交矩阵的一个证明题...
题目
正交矩阵的一个证明题
a是n维实列向量,a不等于0,矩阵A=E-kaaT,k为非零常数,则A为正交矩阵的充分必要条件为k=?
求详细思路.

提问时间:2020-11-27

答案
设b=aTa,注意aTa为一个数字.A为正交矩阵==>AAT=E而AAT=(E-kaaT)(E-kaaT)T 注意到ET=E,(aaT)T=aaT=(E-kaaT)(E-kaaT)=E-2kaaT+k^2aaTaaT 注意,中间那个aTa为常数b=E-2kaaT+bk^2aaT=E+(bk^2-2k)aaT此结果若要等于E,则必...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.