当前位置: > 如图,B、C是⊙O上的点,线段AB经过圆心O连接AC、BC,过点C作CD⊥AB于D,∠ACD=2∠B.AC是O的切线吗?为什么?...
题目
如图,B、C是⊙O上的点,线段AB经过圆心O连接AC、BC,过点C作CD⊥AB于D,∠ACD=2∠B.AC是O的切线吗?为什么?

提问时间:2020-11-26

答案
AC是⊙O的切线.理由:连接OC;∵OC=OB,∴∠OCB=∠B.∵∠COD是△BOC的外角,∴∠COD=∠OCB+∠B=2∠B.∵∠ACD=2∠B,∴∠ACD=∠COD.∵CD⊥AB于D,∴∠DCO+∠COD=90°;∴∠DCO+∠ACD=90°,即OC⊥AC.∵C为⊙O上...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.