当前位置: > 已知关于X的方程(M^2-4M+5)X^2+(2M+1)X-1=0.求证:不论M为何值,方程是关于X的一元二次方程...
题目
已知关于X的方程(M^2-4M+5)X^2+(2M+1)X-1=0.求证:不论M为何值,方程是关于X的一元二次方程
2,不论M为何值,方程总是有2个不相等的实数根

提问时间:2020-11-24

答案
1.
二次项系数为 M^2-4M+5=M^2-4M+4+1=(M-2)²+1
所以二次项系数不为0 即不论M为何值,方程是关于X的一元二次方程
2.
(M^2-4M+5)X^2+(2M+1)X-1=0.
△=(2M+1)²+4(M^2-4M+5)
=4M²+4M+1+4M^2-16M+20
=8M^2-12M+21
设 W=8M^2-12M+21
则 △’=(-12)²-32*21=-528
所以 W始终是大于0的,因为二次项系数大于0 ,判别式小于0
所以 上面 △=8M^2-12M+21 恒大于0
所以 不论M为何值,方程总是有2个不相等的实数根
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.