当前位置: > 证明交换群G的所有有限阶元素的集合作成G的子群...
题目
证明交换群G的所有有限阶元素的集合作成G的子群

提问时间:2020-11-25

答案
可设有限阶元素的集合为H
任取a,b属于H ,由于a,b是有限阶的.
即存在n,m a^n=1 b^m=1
可知:(ab)^nm=1 所以ab是有限阶的.即ab属于H.(关于乘法封闭)
另外,a^n=1则 a^(n-1)即为a的逆元.(有逆元)
单位元e是有限阶的.e属于H.(有单位元)
由此即可知H是一个子群.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.