当前位置: > 设奇函数y=f(x)定义域为R,f(1)=2,且对任意的x1、x2∈R,都有f(x1+x2)=f(x1)+f(x2),当x>0时,f(x)是增函数,则函数f=-f^2(x),在区间[-3,-2]上的最...
题目
设奇函数y=f(x)定义域为R,f(1)=2,且对任意的x1、x2∈R,都有f(x1+x2)=f(x1)+f(x2),当x>0时,f(x)是增函数,则函数f=-f^2(x),在区间[-3,-2]上的最大值是?

提问时间:2020-11-23

答案
最大值是-16
函数是奇函数,同时在x>0时是增函数,可以推出,当xx2>0则,f(x1)>f(x2),即 -f(-x1)>-f(-x2) 所以f(-x1)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.