当前位置: > 设p是圆 x^2+(y-2)^2=1上的一个动点,Q为双曲线x^2-y^2=1上的一个动点,求|PQ|的最小值?|...
题目
设p是圆 x^2+(y-2)^2=1上的一个动点,Q为双曲线x^2-y^2=1上的一个动点,求|PQ|的最小值?|
要解题的过程,帮帮忙,很急的!
明天之前要解决

提问时间:2020-11-22

答案
设圆心是 A.
首先,明确一点,|PQ|要想达到最小值,P 一定在 AQ 的连线上,因为,如果 P 不在这条连线上,假设在 P' 点,那么 AQ = PA + PQ < P'A + P'Q,
由于 PA = P'A ,PQ < P'Q.
以上说明了,只需求 AQ 的最小值,AQ - 半径 ,就是|PQ|的最小值了.
下面求 AQ 的最小值.
A = (0,2) ,
AQ^2 = x^2 + (y-2)^2
x,y 满足x^2-y^2=1 ,x^2 = y^2 + 1
AQ^2 = y^2 + 1 + y^2 - 4y + 4 = 2y^2 - 4y + 5 =
2(y^2 - 2y + 1) + 3 =
2(y-2)^2 + 3 >= 3
AQ >= 根3
PQ >= 根3 - 1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.