当前位置: > 如图,直线y=2x+4与x轴、y轴分别交于A、B两点,把△OAB绕点O顺时针旋转90°得到△OCD. (1)求经过A、B、D三点的抛物线的解析式; (2)在所求的抛物线上是否存在一点P,使直线CP把△...
题目
如图,直线y=2x+4与x轴、y轴分别交于A、B两点,把△OAB绕点O顺时针旋转90°得到△OCD.
(1)求经过A、B、D三点的抛物线的解析式;
(2)在所求的抛物线上是否存在一点P,使直线CP把△OCD分成面积相等的两部分?如果存在,求出点P的坐标;如果不存在,请说明理由.

提问时间:2020-11-22

答案
(1)在y=2x+4中,分别令y=0和x=0来得到:A(-2,0)、B(0,4)、
D点是因为旋转,OD=OB,所以,D点(4,0);
C点也是因为旋转,OA=OC,所以,C点(0,2);
设经过A、B、D的抛物线解析式为y=ax2+bx+c,
则有:4a-2b+c=0①,c=4②,16a+4b+c=0③(3分)
解①②③得:a=−
1
2
,b=1,c=4,
∴抛物线的解析式为:y=−
1
2
x2+x+4
.(4分)
(2)若存在点P满足条件,则直线CP必经过OD的中点E(2,0);(5分)
易知经过C、E的直线为y=-x+2,(6分)
于是可设点P的坐标为P(m,-m+2);
将P(m,-m+2)代入y=−
1
2
x2+x+4

得:
1
2
m2+m+4=−m+2
,(7分)
整理,得:m2-4m-4=0,
解得:m1=2+2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.