当前位置: > f(x),定义域为R,且x不恒为0 f(m)f(n)=mf(n/2)+nf(m/2)成立 证明t×f(t)≥0...
题目
f(x),定义域为R,且x不恒为0 f(m)f(n)=mf(n/2)+nf(m/2)成立 证明t×f(t)≥0

提问时间:2020-11-22

答案
证明:
因为f(m)f(n)=mf(n/2)+nf(m/2)对X属于R成立
所以令m=n=2t
所以:
[f(2t)]^2=2tf(t)+2tf(t)=4tf(t)
因为[f(2t)]^2>=0
所以4tf(t)>=0
即t×f(t)≥0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.