当前位置: > 例4.设x,y∈R,求证:|x+y|=|x|+|y|成立的充要条件是xy≥0....
题目
例4.设x,y∈R,求证:|x+y|=|x|+|y|成立的充要条件是xy≥0.

提问时间:2020-11-21

答案
证明:充分性:如果xy=0,那么,①x=0,y≠0②x≠0,y=0③x=0,y=0于是|x+y|=|x|+|y|明显成立.
如果xy>0即x>0,y>0或x<0,y<0
当x>0,y>0时,|x+y|=x+y=|x|+|y|,
当x<0,y<0时,|x+y|=-x-y=(-x)+(-y)=|x|+|y|,
总之,当xy≥0时,|x+y|=|x|+|y|.
必要性:由|x+y|=|x|+|y|及x,y∈R
得(x+y)2=(|x|+|y|)2即x2+2xy+y2=x2+2|xy|+y2
得|xy|=xy所以xy≥0故必要性成立,
综上,原命题成立.
故结论成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.