当前位置: > P为三角形ABC所在平面外一点,PA⊥ PB,PB ⊥PC,PC ⊥PA,PH ⊥平面ABC于H....
题目
P为三角形ABC所在平面外一点,PA⊥ PB,PB ⊥PC,PC ⊥PA,PH ⊥平面ABC于H.
求证:1 H是三角形ABC的垂心
2 三角形ABC为锐角三角形

提问时间:2020-11-21

答案
PA⊥PB,PB⊥PC,PC⊥PA
所以PA⊥面BPC进一步推出PA⊥BC
因为AH为PA在三角形上的射影,根据射影定理得AH⊥BC
同理可得BH⊥AC,CH⊥AB
得证H为△ABC的垂心
设PA=a,PB=b,PC=c
AB^2=a^2+b^2,BC^2=b^2+c^2,CA^2=c^2+a^2
AB^2+BC^2-CA^2=2b^2>0
同理可以看出三角形ABC任意两边的平方和是大于第三边的平方的,显然这是锐角三角形才具有的特征
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.