当前位置: > 证明任意正整数n,2^999-1与2^n+1互质...
题目
证明任意正整数n,2^999-1与2^n+1互质

提问时间:2020-11-20

答案
假设(2^999-1,2^n+1)=d
1≡(2^999)^n≡(2^n)^999≡-1(mod d)
所以1≡-1(mod d)
d=1或2
d显然为奇数,所以d=1
推广m,n是整数,且m是奇数,求证2^m-1和2^n+1互素
别人帮我做了这个..我才会的你这个..
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.