题目
若直线l:ax+by+1=0始终平分圆M:x2+y2+4x+2y+1=0的周长,则(a-2)2+(b-2)2的最小值为( )
A.
B. 5
C. 2
D. 10
A.
5 |
B. 5
C. 2
5 |
D. 10
提问时间:2020-11-20
答案
∵直线l:ax+by+1=0始终平分圆M:x2+y2+4x+2y+1=0的周长
∴直线必过圆M:x2+y2+4x+2y+1=0的圆心
即圆心(-2,-1)点在直线l:ax+by+1=0上
则2a+b-1=0
则(a-2)2+(b-2)2表示点(2,2)至直线2a+b-1=0点的距离的平方
则其最小值d2=(
)2=5
故选B
∴直线必过圆M:x2+y2+4x+2y+1=0的圆心
即圆心(-2,-1)点在直线l:ax+by+1=0上
则2a+b-1=0
则(a-2)2+(b-2)2表示点(2,2)至直线2a+b-1=0点的距离的平方
则其最小值d2=(
|2×2+2×1−1| | ||
|
故选B
本题考查的是直线与圆性质及其综合应用,由已知条件我们可以判定直线必过圆M:x2+y2+4x+2y+1=0的圆心,则不难求出(a,b)表示的点在平面直线直角坐标系中的位置,分析表达式(a-2)2+(b-2)2的几何意义,找出满足条件的点的坐标,即可求出答案.
圆方程的综合应用.
直线的性质与圆的方程都是高考必须要考的知识点,此题巧妙地将直线与圆性质融合在一起进行考查,题目有一定的思维含量但计算量不大,所以题型设置为选择题,该试题立足基础考查了学生思维能力与运算能力以及灵活运用所学数学知识处理相关问题的能力,有一定的选拔作用同时对中学数学教学具有产生较好地导向作用.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1电流的形成有几种形式,分别是什么?
- 2f(x)在(-∞,+∞)上连续且是偶函数,F(x)=∫[0,x](x-2t)f(t)dt 试证F(x)为偶函数(解答过程有一步不懂)
- 3如图所示,灯重30N,灯挂在水平横杆的C端,O为杠杆的支点,水平杆OC长2m,杆重不计,BC长0.5m,绳子BD作用在横杆上的拉力是多少?(已知:∠DBO=30°)
- 4《泊船瓜洲》是谁写的诗句是什么?
- 5一道初二函数练习题
- 6囫囵吞枣文言文 逐字翻译
- 7一百货商店的所用商品均按八五折出售,一台摄像机原价5000元,一盘录像带原价30元.小明的爸爸带了4500元,想买一台摄像机和10盘录像带,他带的钱够吗?
- 8Are green beans your favourite food?答句是什么?
- 9三峡工程对南方遭遇极端天气有影响吗?
- 10用-3,-4,6,-10列出一个有理数的混合运算式子
热门考点