当前位置: > 如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O,∠EBO=∠DCO且BE=CD.求证:△ABC是等腰三角形....
题目
如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O,∠EBO=∠DCO且BE=CD.求证:△ABC是等腰三角形.

提问时间:2020-11-20

答案
证明:在△EBO和△DCO中,
∠EBO=∠DCO
∠EOB=∠DOC
BE=CD

∴△EBO≌△DCO(AAS),
∴OB=OC,
∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∴∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形.
先利用“角角边”证明△EBO和△DCO全等,根据全等三角形对应边相等可得OB=OC,再根据等边对等角的性质求出∠OBC=∠OCB,然后求出∠ABC=∠ACB,根据等角对等边可得AB=AC,从而得证.

等腰三角形的判定;全等三角形的判定与性质.

本题考查了等腰三角形的判定与性质,全等三角形的判定与性质,求出∠ABC=∠ACB是解题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.