当前位置: > 设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵....
题目
设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.

提问时间:2020-11-19

答案
直接验证.a是单位列向量,所以aTa=1
AT=ET-2(aaT)T=E-2aaT所以是对称阵.
ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E
这说明A是正交阵.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.