当前位置: > 已知函数f(x)=x2+ax+3,当x∈[-2,2]时,f(x)≥a恒成立,求a的最小值....
题目
已知函数f(x)=x2+ax+3,当x∈[-2,2]时,f(x)≥a恒成立,求a的最小值.
答案是[-7,2] 我用变更主元做 即 (1-x)a+x2+3>=0 但答案是[-7,7/3]
为什么不对 求解

提问时间:2020-11-18

答案
答:他的答案有误,你用变更主元求a的值域,我算出来也是[-7,2];用分类讨论对称轴的方法:对称轴x=-a/2①当-a/24,最小值为f(-2).解得f(-2)≥a为a≤7/3,所以此时无解.估计答案7/3是这么来的,但是没有和a>4的前提作交集...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.