题目
已知函数f(x)=x3+bx2+cx+2在x=1时有极值6.
(Ⅰ)求b,c的值;
(Ⅱ)若函数f(x)的图象上是的切线与直线3x+y+1=0平行,求该切线方程.
(Ⅰ)求b,c的值;
(Ⅱ)若函数f(x)的图象上是的切线与直线3x+y+1=0平行,求该切线方程.
提问时间:2020-11-18
答案
(Ⅰ)f′(x)=3x2+2bx+c,
依题意有f(1)=6,f′(1)=0.
可得
可得b=-6,c=9.
(Ⅱ)由(Ⅰ)可知f′(x)=3x2-12x+9,
依题意可知,切线的斜率为-3.
令f′(x)=-3,
可得x=2,
即f′(2)=-3.
又f(2)=4,
所以切线过点(2,4).
从而切线方程为3x+y-10=0.
依题意有f(1)=6,f′(1)=0.
可得
|
可得b=-6,c=9.
(Ⅱ)由(Ⅰ)可知f′(x)=3x2-12x+9,
依题意可知,切线的斜率为-3.
令f′(x)=-3,
可得x=2,
即f′(2)=-3.
又f(2)=4,
所以切线过点(2,4).
从而切线方程为3x+y-10=0.
(Ⅰ)由函数f(x)=x3+bx2+cx+2在x=1时有极值6可得f(1)=6,f′(1)=0,可求得,c的值;
(Ⅱ)若函数f(x)的图象上是的切线与直线3x+y+1=0平行,根据导数的几何意义,求得切点的坐标,从而求得切线方程.
(Ⅱ)若函数f(x)的图象上是的切线与直线3x+y+1=0平行,根据导数的几何意义,求得切点的坐标,从而求得切线方程.
函数在某点取得极值的条件;利用导数研究曲线上某点切线方程.
考查函数在某点取得极值的条件和导数的几何意义,体现了解方程的思想方法,属基础题.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点