当前位置: > △ABC是等边三角形,P是形外一点,且∠ABP=∠ACP=180°.则线段PB,PC,PA之间有何数量关系,请说明理由...
题目
△ABC是等边三角形,P是形外一点,且∠ABP=∠ACP=180°.则线段PB,PC,PA之间有何数量关系,请说明理由

提问时间:2020-11-17

答案
在PA上截取PE=BP,连接BE
因为∠ABP+∠ACP=180°
所以A、B、P、C四点共圆
因为△ABC是等边三角形
所以∠BCA=60°
因为∠BPA=∠BCA
所以∠BPA=60°
因为PE=BP
所以△BPE是等边三角形
所以 BE=BP
又因为AB=AC,∠BAP=∠BCP
所以△ABE≌△CBP
所以AE=CP
所以BP+CP=PE+AE=AP
即PB+PC=PA
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.